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Abstract

In this article, we study the dynamic transitions of a low-dimensional dynam-

ical system for the Rayleigh-Bénard convection subject to a vertically applied

magnetic field. Our analysis follows the dynamical phase transition theory for

dissipative dynamical systems based on the principle of exchange of stability and

the center manifold reduction. We find that, as the Rayleigh number increases,

the system undergoes two successive transitions: the first one is a well-known

pitchfork bifurcation, whereas the second one is structurally more complex and

can be of different type depending on the system parameters. More precisely,

for large magnetic field, the second transition is of continuous type and gives to

a stable limit cycle; on the other hand, for low magnetic field or small height-to-

width aspect ratio, a jump transition occurs where an unstable periodic orbit

eventually collides with the stable steady state, leading to the loss of stabil-

ity at the critical Rayleigh number. Finally, numerical results are presented to

corroborate the analytic predictions.
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1. Introduction

The Rayleigh-Bénard (RB) convection is a classical buoyancy-driven convec-

tion problem that is relevant for the study of thermal convection phenomena in

geophysical science and many engineering applications. It describes the motion

of a horizontal fluid layer heated from below and cooled on the top. The dynamic5

behaviour of the fluid is determined by the Rayleigh number. As Rayleigh num-

ber increases, the convection state undergoes a sequence of bifurcations (transi-

tions) leading to developed turbulence. Hence the Rayleigh-Bénard convection

serves as a fundamental example for the study of nonlinear dynamics such as

bifurcations, pattern formation, instabilities and turbulence [1].10

The stability and bifurcation of the RB convection at the first transition is

well-known, see for instance [2, 3] for the linear stability analysis, and [4, 5, 6, 7]

for nonlinear theories, among many others. In particular, the authors in [7, 8]

show that the Rayleigh-Bénard problem bifurcates from the basic state to an

attractor when the Rayleigh number crosses the first critical Rayleigh number15

under physically sound boundary conditions. Recently, they have classified the

solutions in the bifurcated attractor and obtained detailed structures of the

solutions of the Bénard problem in physical space (rolls, rectangles, hexagons,

etc.), see [9, 10] for details. Their nonlinear method is based on the geometric

theory for incompressible flows [11] and the bifurcation and stability theory for20

nonlinear dynamical systems [12].

While the theory of the first transition for the RB convection is rather com-

plete, there is a lack of systematic mathematical study on the second transition,

partly due to the absence of explicit formulations of the bifurcated solutions. In

this article, we focus on the study of the bifurcation and classification of the dy-25

namic transition of a low-dimensional model (a system of nonlinear ordinary dif-

ferential equations) for the RB convection in the presence of magnetic field–also

known as hydromagnetic convection. The RB convection under the influence of
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magnetic field is important for a number of geophysical and astrophysical prob-

lems [2, 13]. It also has many industrial applications, such as, in crystal growth,30

in fusion reactor and in the manufacture of semiconductors. Because of its im-

portance, many research based on numerical simulations and real-world experi-

ments have been carried out to study the instabilities and bifurcations associated

with hydromagnetic convection, see [14, 15, 16, 17, 18, 13, 19, 20, 21, 22, 23, 24]

and references therein. These study reveals the stabilizing effect of magnetic35

field (Lorentz force) in RB convection by suppressing the unstable fluctuations

and degenerating turbulence.

Our study on the dynamical transition of the RB convection in the presence

of a vertically applied magnetic field is based on a low-dimensional dynamical

system–a set of nonlinear ordinary differential equations. The system is derived40

by truncating a two-dimensional Boussinesq model for the RB convection in an

incompressible conducting fluid in the Fourier series expansions, in the spirit

of the celebrated Lorentz system [25]; see Sec. 2 for details. This simplified

low-dimensional dynamical system was previously employed in [26] in the nu-

merical investigation of the RB convection in an incompressible conducting fluid45

subjected to a magnetic field.

In this article, we are interested in the classification and characterization of

the first and second transitions in a low-dimensional dynamical system for the

RB convection with the influence of magnetic field. We follow the approach

of the dynamic phase transition theory for dissipative dynamical systems [27]50

which is developed based on the principle of exchange of stability and the center

manifold reduction. See also [28, 29, 30, 31, 32] for applications of the theory.

In the study, we focus on the effect of magnetic field on the transition. We find

that, in loose terms, for large magnetic field, the system undergoes a continuous

transition as the Rayleigh number crosses the second critical value (a continuous55

sequence of limit cycles emerge), while for low magnetic field a jump transition

occurs (a butterfly orbit is present through the transition). Moreover, the effect

of magnetic field on the transition depends on the aspect ratio. There exists

a critical aspect ratio below which only jump transition is possible no matter
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how strong the magnetic field is. These results confirm the stabilizing effect of60

magnetic field in the RB convection.

The rest of the article is organized as follow. We present the low-dimensional

dynamical system in Sec. 2. We classify and characterize the first and second

transitions in Sec. 3. Numerical results corroborating the analysis are given in

Sec. 4. We conclude the article with some physical implications in Sec. 5.65

2. The mathematical formulation

In this section, we give a quick derivation of the low-dimensional dynamical

system from the Boussinesq system governing the RB convection in an incom-

pressible conducting fluid subject to a vertical magnetic field in a 2D channel.

The derivation follows closely that of the Lorentz system [25], see also [26]. The70

2D Boussinesq system is as follows

∂u
∂t + (u · ∇)u = ν∆u− 1

ρ0
∇p∗ + µ0

ρ0
(H · ∇)H− gk(1− α(T − T0)), (1)

∂T
∂t + (u · ∇)T = κ∆T, (2)

∂H
∂t + (u · ∇)H = η∆H + (H · ∇)u, (3)

∇ · u = 0, (4)

∇ ·H = 0, (5)

where ∆ = ∂2

∂x2 + ∂2

∂z2 is the 2D Laplacian; u, T,H are the velocity field, tem-

perature field, and magnetic field respectively; and p∗ is the modified pressure

p∗ = p + µ0

2 H2. In the system, ν is the kinematic viscosity, µ0 is the mag-

netic permeability, g is the gravitational constant, α is the coefficient of volume75

expansion, κ is the thermal diffusivity, and η is the magnetic diffusivity.

The system (1) can be reformulated in terms of stream functions. Upon

making the transformation

u =
(
−∂ψ∂z ,

∂ψ
∂x

)
, (6)

H = H0k +
(
−∂φ∂z ,

∂φ
∂x

)
, (7)

T = T0 + (T1 − T0) zh + Θ, (8)
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the system (1) becomes

∂∆ψ
∂t + ∂(ψ,∆ψ)

∂(x,z) = ν∆2ψ + µ0

ρ0

∂(φ,∆φ)
∂(x,z) + µ0

ρ0
H0

∂∆φ
∂z + gα∂Θ

∂x , (9)

∂Θ
∂t + ∂(ψ,Θ)

∂(x,z) = κ∆Θ + T0−T1

h
∂ψ
∂x , (10)

∂∆φ
∂t + ∂(ψ,∆φ)

∂(x,z) −
∂(φ,∆ψ)
∂(x,z) = η∆2φ+H0

∂∆ψ
∂z (11)

−2

(
∂
(
∂ψ
∂x ,

∂φ
∂x

)
∂
(
x,z
) +

∂
(
∂ψ
∂z ,

∂φ
∂z

)
∂
(
x,z
) )

, (12)

where ∂(f,g)
∂(x,z) = ∂f

∂x
∂g
∂z −

∂f
∂z

∂g
∂x .80

Introducing the dimensionless variables with h the height of the channel

(x, z) = h(x′, z′), t =
h2

κ
t′, ψ = κψ′, φ = hH0φ

′, (13)

and defining the dimensionless constants

Pr = ν
κ , the Prandtl number, (14)

Pm = η
κ , the magnetic Prandtl number, (15)

Q =
µ0H

2
0h

2

ρ0κν
, the Chandrasekhar number, (16)

Re = gα(T0−T1)h2

κν , the Rayleigh number, (17)

we obtain the following nondimensionalized system, omitting the primes,

1
Pr

∂∆ψ
∂t + 1

Pr

∂(ψ,∆ψ)
∂(x,z) = ∆2ψ +Q∂(φ,∆φ)

∂(x,z) +Q∂∆φ
∂z +Re

∂Θ
∂x , (18)

∂Θ
∂t + ∂(ψ,Θ)

∂(x,z) = ∆Θ + ∂ψ
∂x , (19)

∂∆φ
∂t + ∂(ψ,∆φ)

∂(x,z) −
∂(φ,∆ψ)
∂(x,z) = Pm∆2φ+ ∂∆ψ

∂z (20)

−2

(
∂
(
∂ψ
∂x ,

∂φ
∂x

)
∂
(
x,z
) +

∂
(
∂ψ
∂z ,

∂φ
∂z

)
∂
(
x,z
) )

. (21)

In order to study the transition of system (18), we use the following mode

truncation85

ψ = X(t) sin aπx sinπz, (22)

φ = W (t) sin aπx cosπz, (23)

Θ = Y (t) cos aπx sinπz − Z(t) sin 2πz. (24)
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with a = h
l the aspect ratio of the channel. Plugging (22)-(24) into system (18)

and comparing coefficients, an ODE system resembling a Lorentz type equation

with a magnetic field can be obtained, see [26] :

dX
dt = −PrX + PrY − PrQW, (25)

dY
dt = RX − Y −XZ, (26)

dZ
dt = −BZ +XY, (27)

dW
dt = cPrP

−1
m X − PrP−1

m W, (28)

where we have introduced the geometric constants

B =
4

1 + a2
, c =

1

π2

1

(1 + a2)2
, (29)

and a normalized Rayleigh number R = Re
Rc

relative to the critical Rayleigh

number Rc. Hereafter we focus on the study of dynamic transitions of (25) as

the Rayleigh number R and the Chandrasekhar number Q vary. Furthermore,

we take

Pr = Pm = 10, (30)

in order to be consistent with Lorenz’s original result without magnetic field.90

Throughout, we study the system

dX
dt = −10X + 10Y − 10QW, (31)

dY
dt = RX − Y −XZ, (32)

dZ
dt = −BZ +XY, (33)

dW
dt = B2

16π2X −W. (34)

3. Classification of the dynamical transitions

3.1. First transition

It is easy to see that (31)–(34) has a global attractor. In fact, a Lyapunov

function for this system is given by95

V =
1

2

(
x2 + y2 + (z − 10−R)2 +

160π2Q

B2
w2

)
. (35)
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Indeed, we have

dV
dt = ∂V

∂x
dx
dt + ∂V

∂y
dy
dt + ∂V

∂z
dz
dt + ∂V

∂w
dw
dt

= −10x2 − y2 −B
(
z − 5− R

2

)2

− 160π2Q
B2 w2 + B

4 (10 +R)2,

from which it follows that{
(x, y, z, w)

∣∣∣∣∣10x2 + y2 +B

(
z − 5− R

2

)2

+
160π2Q

B2
w2 ≤ B

4
(10 +R)

2

}
is a absorbing set for (31)–(34) , and so the existence of a global attractor is

established.

Regarding the transition of the system at the equilibrium point P0 = (0, 0, 0, 0),

we begin by noting that the corresponding linearization is governed by the ma-100

trix

LR =


−10 10 0 −10Q

R −1 0 0

0 0 −B 0

B2

16π2 0 0 −1

 . (36)

The corresponding eigenvalues are found to be

λ2 = −1, λ3 = −B, (37)

λ4 =
−
√

2
√
−5B2Q+80π2R+162π2−22π

4π , (38)

λ1 =
√

2
√
−5B2Q+80π2R+162π2−22π

4π . (39)

In virtue of (37) we see that the following holds:

λ1(R,Q)


< 0, R < R1,

= 0, R = R1,

> 0, R > R1,

(40)

λi(R1, Q) < 0, i = 2, 3, 4, R1 = 1 + B2Q
16π2 (41)

These conditions are referred to as the principle exchange of stability in the

dynamic phase transition theory, cf. [27]. We are thus led to the following105

result.
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Figure 1: Topological structure of the first transition. P0 is the origin; P1 and P2 are the

bifurcated solutions defined in Eqs. (42)-(43); R is the Rayleigh number; R1 and R2 are the

first and second critical Rayleigh number, respectively; arrow lines indicated stability.

Theorem 3.1. The system (31)–(34) undergoes a continuous transition around

the origin at R = R1. More precisely, for R ≤ R1 and Q < 48π2

B2 , There exists

R0 dependent on B and Q such that if R ≤ R0 ≤ R1, the origin P0 = (0, 0, 0, 0)

is the only fixed point of the system and it attracts any bounded set in R4,110

whereas for R > R1, P0 bifurcates to two non-trivial solutions given by

P1 =

(√
B(R−C)

C ,
√
B(R− C)C,R− C, B2

16π2

√
B(R−C)

C

)
, (42)

P2 =

(
−
√

B(R−C)
C ,−

√
BC(R− C), R− C,− B2

16π2

√
B(R−C)

C

)
, (43)

where C = 1 + B2Q
16π2 . Furthermore, the critical points P1 and P2 are stable, and

there exists two disjoint open sets U1, U2, with R4 = Ū1 ∪ Ū2,∂U1 ∩ ∂U2 = Γ,

where Ui is the basin of attraction of Pi for i = 1, 2, and Γ is the stable manifold

of P0.115

The topological structure of the first transition around P0 is shown in Fig.

(1).

Proof. At the critical value R = R1, the eigenvectors of (36) corresponding to

the eigenvalues given in (37) are given (in row form for conciseness of notation)
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by120

e1 =

(
− 10

M
,Q+

1

M
, 0, 1

)
, e2 = (0, Q, 0, 1) ,

e3 = (0, 0, 1, 0) , e4 =

(
1

M
,Q+

1

M
, 0, 1

)
,M =

B2

16π2
.

Similarly, the dual eigenvectors (i.e. left eigenvectors of LR) are given by

e∗1 =

(
1

Q
,− 1

Q
, 0, 1

)
, e2∗ =

(
−M

1 +MQ
,Q, 0, 1

)
,

e∗3 = (0, 0, 1, 0) , e∗4 =

(
−1

10Q
,
−1

Q
, 0, 1

)
.

Now, let E1 = span {e1}, E2 = span {e2, e3, e4}, and P2 be the projection

onto E2. Based on the approximate formula for the center manifold in [27]

(Appendix A, equation (A.2.19)), the linearization around P0 behaves like u =

xe1 + Φ + o(x2), where Φ is determined by the equation

−LRΦ = P2G(e1, e1)x2. (44)

Here LR is the matrix defined in (36).

More precisely, writing Φ = (a2e2 + a3e3 + a4e4)x2 + o(x2), (44) takes the

form

(−LR(a2e2 + a3e3 + a4e4), e∗i ) = (G(e1, e1), e∗i ), i = 2, 3, 4. (45)

It is easy to see that the unique solution of (45) is given by

a2 = a4 = 0, a3 = − 1

B

(
10

M2
+

10Q

M

)
. (46)

The invariant manifold function is thus approximately given by

Φ = − 1

B

(
10

M2
+

10Q

M

)
x2e3 + o(x2).

Next, in order to obtain the corresponding reduced equations, we compute

(G(xe1 + Φ, xe1 + Φ), e∗1) = − 1

BQ

(
100

M3
+

100Q

M2

)
x3 + o(x3).
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Based on Theorem 2.3.1 in [27], since the coefficient of x3 above is always

negative, it follows that (31)–(34) has a continuous transition at (0, Rc). In

other words, the equilibrium P0 undergoes a pitchfork bifurcation at R = R1.125

Now, let’s prove the global stability of 0. Construct a energy function V as

follows

V =

(
1

10
+

B2Q

160π2

)
X2 + Y 2 + Z2 +

(
Q+

16π2

B2

)
QW 2. (47)

Then, we have

dV

dt
= 2

(
1

10
+

B2Q

160π2

)
XẊ + 2Y Ẏ + 2ZŻ + 2

(
Q+

16π2

B2

)
QWẆ

= −2

(
1 +

B2Q

16π2

)
X2 + 2

(
R+ 1 +

B2Q

16π2

)
XY − 2Y 2

− 2BZ2 − 2

(
Q+

16π2

B2

)
QW 2

= −2

(
1 +

B2Q

16π2

)(
X2 −

(
1 +

R

1 + B2Q
16π2

)
XY

)

− 2Y 2 − 2BZ2 − 2

(
Q+

16π2

B2

)
QW 2

= −2

(
1 +

B2Q

16π2

)(
X − 1

2

(
1 +

R

1 + B2Q
16π2

)
Y

)2

+


(
R+ 1 + B2Q

16π2

)2

2 + B2Q
8π2

− 2

Y 2 − 2

(
Q+

16π2

B2

)
QW 2.

(48)

(48) means that (
R+ 1 + B2Q

16π2

)2

2 + B2Q
8π2

− 2 ≤ 0 (49)

is the sufficient condition of the global stability of 0, and Q < 48π2

B2 , means that

R1 ≥ R0 = −1− B2Q

16π2
+ 2

√
1 +

B2Q

16π2
> 0. (50)

3.2. Second transition

In this section we study the transition from the bifurcated equilibria Pi,

i = 1, 2, occurring when R > R1 is sufficiently large. Hereafter we consider the
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transformation

(X,Y, Z,W ) = P1 + (X ′, Y ′, Z ′,W ′),

so that, upon substitution in (31)–(34) and dropping the primes, we obtain the

system130

dX
dt = −10X + 10Y − 10QW, (51)

dY
dt = CX − Y −

√
B(R−C)

C Z −XZ, (52)

dZ
dt =

√
B(R− C)CX +

√
B(R−C)

C Y −BZ +XY, (53)

dW
dt = B2

16π2X −W. (54)

Note that there is no loss of generality in considering only P1, since by

performing the analogous transformation

(X,Y, Z,W ) = P2 + (X ′, Y ′, Z ′,W ′),

one arrives again at (51)–(54).

By linearizing (51)–(54) around the origin one obtains the matrix

M =


−10 10 0 −10Q

D −1 −
√

B(R−C)
C 0√

B(R− C)C
√

B(R−C)
C −B 0

B2

16π2 0 0 −1

 . (55)

The eigenvalues of M are determined by the equation

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0

where, after some straightforward computations, we obtain the formulae

a3 = B + 12,

a2 = 11(B + 1) +
BR

B2

16π2Q+ 1
,

a1 =
11

B2

16π2Q+ 1
BR+ 10B

(
R− B2

16π2
Q− 1

)
,

a0 = 20B

(
R− B2

16π2
Q− 1

)
.
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The above quartic equation has a purely imaginary solution if and only if

a2
1 + a0a

2
3 = a1a2a3

which in turns becomes a quadratic equation for R whose unique solution greater

than R1 is of the form

R2 =
25(B2Q+ 16π2)

D

[
4π2

25
(B + 12)

√
Y1 + Y2

]
where

Y1 =
(
2500B6 − 4300B5 + 4225B4

)
Q2

+
(
173280B4π2 − 170160B3π2 + 9360π2B2

)
Q

+ 3069504B2π4 + 252288Bπ4 + 5184π4,

Y2 =
1

25

(
6432B2 + 90336B − 3456

)
π4

+
32B2π2Q

5

(
B2 +

145B

8
− 39

2

)
+B5Q2,

D = 400B5Q2π2 − 640B3Q(B − 30)π4 − 21504(B − 9)Bπ6.

It is easy to see from the above formulae that for any fixed pair (Q,B) there

exists a unique R2 such that

Re xi


< 0, R < R2,

= 0, R = R2,

> 0, R > R2,

i = 1, 2, (56)

Re xi < 0, i = 3, 4, (57)

Im xi 6= 0, i = 1, 2. (58)

The values of R and Q that give raise to the first and second transitions as

discussed above are shown in Fig. 2, where the value of B is fixed at 8/3, which

corresponds to the spatial scale L =
√

2.135

3.2.1. The type of second transition

We use the transition theorem established by Ma and Wang [27] to study

type of transition for problem (31)–(34). Before doing so, we focus on some

analysis.
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Denote140

G(X,Y, Z,W ) =


0

−XZ

XY

0

 . (59)

Let {βk(R)}4k=1 be the eigenvalues of the matrix M given in (55), and assume

β1 = α− iσ = β2, and β3, β4 ∈ R. Let e1 and e2 be the real part and imaginary

part of the eigenvector corresponding to β1, respectively. For ξ = xe1 + ye2 we

have

Mξ = (αx− σy)e1 + (αy + σx)e2.

We introduce the linear spaces Hc = span {e1, e2} and Hs = {e3, e4}, with

corresponding orthogonal projections Pc and Ps. Letting u = xe1 + ye2 + ze3 +

we4, uc = Pcu and us = Psu, one can rewrite (51)–(54) as

dx

dt
= αx− σy + (G(uc + us, uc + us), e

∗
1) ,

dy

dt
= (αy + σx) + (G(uc + us, uc + us), e

∗
2) ,

dus
dt

= Msus + PsG(uc + us, uc + us).

13



In order to approximate the center manifold function we use the ansatz

us = h(uc) = h2(uc) + h3(uc) + h4(uc) +O(|uc|5),

where hk is k-linear. Note that

dus
dt

=
dh

dt
= ∂xh

dx

dt
+ ∂yh

dy

dt

which means that

Msh+Gs(uc, uc) + G̃s(uc, h) +Gs(h, h)

= ∂xh [αx− σy + (G(uc + us, uc + us), e
∗
1)]

+ ∂yh [αy + σx+ (G(uc + us, uc + us), e
∗
2)]

Now, for h = f3(x, y)e3 + f4(x̄, ȳ)e4, let’s define

∇h(uc) ≡


e3,1

(
∂f3
∂x e

∗T
1 + ∂f3

∂y e
∗T
2

)
+ e4,1

(
∂f4
∂x e

∗T
1 + ∂f4

∂y e
∗T
2

)
e3,2

(
∂f3
∂x e

∗T
1 + ∂f3

∂y e
∗T
2

)
+ e4,2

(
∂f4
∂x e

∗T
1 + ∂f4

∂y e
∗T
2

)
e3,3

(
∂f3
∂x e

∗T
1 + ∂f3

∂y e
∗T
2

)
+ e4,3

(
∂f4
∂x e

∗T
1 + ∂f4

∂y e
∗T
2

)
e3,4

(
∂f3
∂x e

∗T
1 + ∂f3

∂y e
∗T
2

)
+ e4,4

(
∂f4
∂x e

∗T
1 + ∂f4

∂y e
∗T
2

)

 .

Let uc = xe1 + ye2, above equations can be rewritten as the following normal

form

∇h2Mcξ +∇h3Mcξ +∇h2Gc(ξ, ξ)

+∇h4Mcξ +∇h2G̃c(ξ, h2) +∇h3Gc(ξ, ξ)

= Msh2 +Gs(ξ, ξ) + Msh3 + G̃s(ξ, h2)

+ Msh4 + G̃s(ξ, h3) +Gs(h2, h2) +O(|ξ|5).

The quadratic part of the above identity gives

∇h2Mcξ −Msh2 = Gs(ξ, ξ).

The formula for h2 is then found by simply solving a linear system. More pre-

cisely, letting h2(ξ) =
∑4
i=3(x2φi2,0+xyφi1,1+y2φi0,2)ei and φi = (φi2,0, φ

i
1,1, φ

i
0,2)T ,
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one needs to solve

(N2 − βi)φi =


〈G(e1, e1), e∗i 〉〈
G̃(e1, e2), e∗i

〉
〈G(e2, e2), e∗i 〉

 ,

where

N2 =


2α σ 0

−2σ 2α 2σ

0 −σ 2α

 .

Similar but more complicated formulas can also be obtained for h3 and h4

without much work. Thus, besides inverting the above linear system, finding the145

explicit form of the eigendecomposition constitutes the core of the computational

work needed to reduce the system.

After having performed all these calculations we arrive at a set of reduced

equations of the form

dx

dt
= αx− σy +

∑
2≤p+q≤5

a1
pqx

pyq +O(|(x, y)|6), (60)

dy

dt
= αy + σx+

∑
2≤p+q≤5

a2
pqx

pyq +O(|(x, y)|6), (61)

where the coefficients aipq, i = 1, 2, 2 ≤ p+q ≤ 5, can be determined numerically

by using the procedure outlined above.

In the polar coordinate x = r cos θ, y = r sin θ, we derive from the system150

(60) –(61) that

dr

dθ
=

αr +
∑5
k=2 r

kuk(sin θ, cos θ) + o(r5)

σ −
∑5
k=2 r

k−1vk(sin θ, cos θ) + o(r4)
, (62)

where

uk(sin θ, cos θ) =
∑
p+q=k

a1
pq cosp+1 θ sinq θ + a2

pq cosp θ sinq+1 θ,

vk(sin θ, cos θ) =
∑
p+q=k

a1
pq cosp θ sinq+1 θ − a2

pq cosp+1 θ sinq θ.

15



Near r = 0, (62) can be expressed as

1

r2

dr

dθ
=

1

σ

(
α

r
+

5∑
k=2

rk−2fk(sin θ, cos θ) + o(r3),

)
(63)

where

f2 = u2 + σ−1αv2,

f3 = u3 + σ−1αv3 + σ−1u2v2 + σ−2αv2
2 ,

f4 = u4 + σ−1αv4 + σ−1u2v3 + σ−1u3v2

+ 2σ−2αv2v3 + σ−2u2v
2
2 + σ−3αv3

2 ,

f5 = u5 + σ−1αv5 + σ−1u2v4 + σ−1u3v3 + σ−1u4v2

+ ασ−2v2
3 + 2σ−2αv2v4 + 2σ−2u2v2v3 + σ−1u3v

2
2

+ 3σ−3αv2
2v3 + σ−3u2v

3
3 + σ−4αv4

3 ,

with the initial value

r(0, R,Q,B) = a.

Let r(θ,R,Q,B, a) have the following Taylor expansion with respect to a at 0

r(θ,R,Q,B, a) = a+ d2(θ,R,Q,B)a2 + d3(θ,R,Q,B)a3 + o(a3). (64)

Putting (64) into (63) gives

dr

dθ
=
α

σ
a+

(α
σ
d2 + f2/σ

)
a2 +

(α
σ
d3 + 2d2f2/σ + f3/σ

)
a3 + o(a3). (65)

Integrating respect to θ gives

r(θ,R,Q,B) =a+
a2

σ

∫ θ

0

f2ds+
a3

σ

∫ θ

0

(2d2f2 + f3)ds

+ a2

∫ θ

0

α

σ
d2ds+ a3

∫ θ

0

α

σ
d3ds+

α

σ
θa.

(66)

Comparing with (64), we see that

d2 =
1

σ

∫ θ

0

f2ds,

d3 =
1

σ

∫ θ

0

(2d2f2 + f3)ds.

(67)
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Using (67), and integrating (63) from 0 to 2π, we obtain

r(2π, a)− r(0, a)

r(2π, a)

=
αρ

σ
+
a

σ

∫ 2π

0

f2dθ +
a2

σ

∫ 2π

0

f3dθ

+
a3

σ

∫ 2π

0

(
f4 + f3

(∫ θ

0

f2ds

))
dθ

+
a4

σ

∫ 2π

0

(
f5 + 2f4

(∫ θ

0

f2ds

)
+ f3

(∫ θ

0

f3ds

))
dθ

+
2a4

σ

∫ 2π

0

f3

(∫ θ

0

f2

(∫ θ

0

f2ds

)
ds

)
dθ,

(68)

where ρ = 2π + o(a). Direct computation gives that155 ∫ 2π

0

f2dθ = 0,∫ 2π

0

f4dθ = 0,∫ 2π

0

f3

(∫ θ

0

f2ds

)
dθ =

2

3
a2

02

∫ 2π

0

f3dθ + o(a),

∫ 2π

0

f3

(∫ θ

0

f3ds

)
dθ = 0.

(69)

Thus, (68) can be rewritten as

r(2π, a)− r(0, a)

r(2π, a)
=
ρα

σ
+ δ2a

2 + δ3a
3 + δ4a

4 + o(a4), (70)

where

δ2 =

∫ 2π

0

f3dθ,

δ3 =
2

3
a2

02δ2,

δ4 =

∫ 2π

0

(
f5 + 2f4

(∫ θ

0

f2ds

))
dθ

+

∫ 2π

0

f3

(∫ θ

0

f2

(∫ θ

0

f2ds

)
ds

)
dθ.

(71)

It is known that each real positive zero a0 of Eq. (70) corresponds to a periodic

solution of (60)–(61). Given a periodic orbit with the fixed a0, for all a close to

17



a0, if160

r(2π, a)− r(0, a)

< 0, a > a0,

> 0, a < a0,
(72)

then the periodic orbit associated with a0 is stable; otherwise, if

r(2π, a)− r(0, a)

> 0, a > a0,

< 0, a < a0,
(73)

then the periodic orbit is unstable.

Denote

N =
ρα

σ
+ δ2a

2 + δ3a
3 + δ4a

4 + o(a4). (74)

For the stability of the critical points P1 and P2 at R = R2, we look at the

sign of N for small positive a. It is clear that the sign of δ2(R2) determines the

stability, as α = 0 (the real part of the complex eigenvalue) at R = R2. Hence165

we define δ2(R2) as the transition number with δ2(R2) > (<) 0 signifying jump

(continuous) transition of the system (31)–(34) at R = R2. If δ2 = 0 (so is δ3,

cf. Eq. (71)), we can use δ4(R2) as the transition number. See [27] for details.

Then we have following results

Figure 3: Topological structure of the jump transition δ2(R2) > 0. A periodic orbit Γ occurs

from P1 on R < R2. A nonzero attractor appears at R∗.

Theorem 3.2. If δ2(R2) > 0 or δ2(R2) = 0, δ4(R2) > 0, the system (31)–(34)170

undergoes a jump transition with an unstable periodic orbit Γ1 colliding with P1

and the coexistence of a stable periodic orbit Γ2 at the second critical number

18



Figure 4: Topological structure of the continuous transition. A Hopf bifurcation occurs at

R2, indicating that a stable limit cycle bifurcates from P1 at R = R2, and whose size grows

continuously with R.

R2. In addition, there exists a subcritical transition number R∗ (R0 < R∗ ≤ R2)

at which there exists a singular separation of periodic orbits such that nonzero

attractor Γ bifurcates from P1 at R = R∗. While there is no periodic solution175

bifurcating from P1 when R > R2.

The topological structure of the jump transition in Theorem 3.2 is best

described in Fig.3.

Proof. Since the quadratic term in N is the dominant one when a > 0 is small,

it is clear that P1 is unstable and the transition is of jump type at R = R2,

under the assumption of this theorem. δ2(R2) > 0 or δ2(R2) = 0, δ4(R2) > 0

implies that N defined in (74) has a real positive root

Γ =

(
−ρα
σδ2

) 1
2

(δ2 > 0) or

(
−ρα
σδ4

) 1
4

(δ2 = 0). (75)

for R < R2c. Using (73) finds that Γ2 is unstable. At last, Combining the exis-

tence of global attractor (see Sec.3.1), results in Theorem 3.1 and the instability180

of P1 at R = R2, it means that there exists subcritical number R = R∗ such

that R0 < R∗ ≤ R2, and there is a non-zero attractor occurs at R = R∗. The

results of separation of periodic orbits can be obtained from the Theorem 2.3.4

and 2.5.1 of Ma and Wang in [27].
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Theorem 3.3. If δ2(R2) ≤ 0, δ3(R2) ≤ 0 and δ4(R2) < 0 , the system (31)–

(34) undergoes a continuous transition (a Hopf bifurcation) at R = R2. In

particular, the steady-state solution P1 bifurcates to a stable periodic trajectory

Γ on R > R2, i.e.,

Γ→ P1, R→ R2. (76)

Furthermore, the periodic orbit is approximately derived as

u(t) =

(
−ρα
σδ2

) 1
2

(cos(σt)e1 + sin(σt)e2) + o(|R−Rc|), δ2 > 0, (77)

u(t) =

(
−ρα
σδ4

) 1
4

(cos(σt)e1 + sin(σt)e2) + o(|R−Rc|), δ2 = 0. (78)

The topological structure of continuous transition described in Theorem 3.3185

is shown in Fig.4.

Proof. Under the assumptions of δ2(R2) ≤ 0, δ3(R2) ≤ 0 and δ4(R2) < 0, it is

easy to see that N defined in (74) is negative at R = R2 for small a, i.e., any

orbit near P1 converges to P1. Hence, P1 is stable at R = R2, and the transition

at (P1, R2) is of continuous type. In addition, it is clear to see that (74) exactly

has only one real positive root

Γ =

(
−ρα
σδ2

) 1
2

(δ2 > 0) or

(
−ρα
σδ4

) 1
4

(δ2 = 0). (79)

for R > R2c. Combining (72) finds that Γ(R) is stable. For R > R2, (74) has

no root, that is, no periodic solution originates from P1 on R > R2.

Remark 3.1. Above bifurcation and transition are associated with critical P1,

for critical point P2, the results are same.190

4. Numerical results and discussion

In this section we study numerically the types and structure of the transi-

tion that this system exhibits at R = R2 for different values of the geometry

parameter B and the Chandrasekhar number Q. According to Eq. (74) the nu-

merical investigation reduces to the computation of the dimensionless numbers195
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δ2, δ3 and δ4, which can be accomplished by solving a series of linear problems

as outlined in Subsection 3.2.1.

Based on Theorems 3.2 and 3.3, a first step in determining the transition type

at R2 is to compute the bifurcation number δ2. A preliminary exploration of δ2

in terms of B and Q is shown in Table 1. These results show that the system is

Table 1: The values of the bifurcation number δ2 with respect to the Chandrasekhar number

Q and the geometry parameter B. δ2 > 0 indicates jump transition; δ2 < 0 implies continuous

transition.

Q\ δ2 \ B 0.2 0.4 0.6 0.8 1 1.4

20 0.004 0.0061 0.0070 0.0074 0.0075 0.0073

80 0.0036 0.0052 0.0060 0.0064 0.0068 0.0078

200 0.0026 0.0031 0.0032 0.0036 0.0046 0.0074

600 -0.0014 -0.0058 -0.0067 -0.0041 -0.0005 0.0046

1000 -0.0061 -0.014 -0.0119 -0.0062 -0.0017 0.0031

200

capable of exhibiting both continuous and jump transitions for different values of

Q and B. In view of this fact, a natural subsequent problem is to approximately

determine the regions in parameter space that give rise to different types of

transition. Since, from a numerical point of view, the evaluation of the map

(Q,B) 7→ δ2 is relatively straightforward, albeit lengthy, the task just described205

can be executed without major issues using a bisection method. We thus obtain

a curve in parameter space, corresponding approximately to δ2(Q,B) = 0, that

represents an effective boundary between the region where a continuous/jump

transition occurs. The results are shown in Figure 5.

From a quantitative point of view, we see that the curve defined by the210

relation δ2(Q,B) = 0 can be cast in the form Q = Qc(B), where Qc is a convex

function defined on the interval (B0, B1), with B0 = 0 and B1 ≈ 1.7795, and

having vertical asymptotes at the endpoints. In particular, for B0 < B < B1 the

type of transition that the system undergoes changes from jump to continuous

as Q crosses a threshold given by Q = Qc(B). Further, when B ≥ B1 the215

transition type at R2 is always jump, irrespective of the value of Q. We remark
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Figure 5: Approximate form of the curve δ2(Q,B) = 0. Below this curve, the system undergoes

a jump transition (δ2 > 0); above it, the transition is continuous (δ2 < 0).

that the latter condition is non-trivial, since we have B = 4
1+a2 , where a = h

l

is the height-to-width aspect ratio, so B is allowed to take values up to B = 4,

and thus the case B1 ≤ B < 4 is indeed feasible if a is sufficiently small.

Physically, the above shows that the vertically applied magnetic field plays220

a stabilizing role in the Rayleigh-Bénard convection. This stabilizing effect is,

however, unable to make the transition continuous when the height-to-width

ratio is so small that B > B1.

In the case δ2 < 0 Theorem 3.3 also provides an estimate for the average

size of the bifurcated periodic orbit, see (77). On the other hand, one can225

directly estimate this quantity by solving the main equations (51)–(54) for a

sufficiently long time and initial data close to P1, and a third estimate can also

be obtained in the same way by solving instead the reduced equations (60)-(61).

Since our analysis predicts that all these quantities are similar to each other,

at least for R close to R2, it is important to corroborate this prediction with230
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numerical simulations. The results are shown in Figure 6. Besides confirming

this prediction, the results also show that all three values get closer together as

the difference R−R2 decreases, which is in agreement with the analysis.

0 0.02 0.04 0.06 0.08 0.1
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Figure 6: Q = 1000, B = 0.6. The average distance of the trajectory and the critical point

P1 after long time for full ODE (red), reduced equations (blue), and the predicted theoretical

value (green).

Irrespective of the type of transition, the linear analysis predicts that the

critical point P1 is locally asymptotically stable when R < R2. This is cor-235

roborated numerically for two sets of parameters producing different types of

transitions in Figure 7 (continuous transition) and Figure 8 (jump transition).

In the case δ2 > 0 the theory predicts the existence of an unstable periodic

orbit when R < R2. Since such a solution is unstable, generic numerical simula-

tions are unable to provide insight about its structure. Thus, in order to extract240

qualitative information regarding this issue, one must turn to the computation

of the higher order bifurcation parameters δ3 and δ4. In Table 2 we explore

some values of the higher order bifurcation numbers for different values of the
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Figure 7: Distance between the trajectory and the critical point P1 as a function of time

before continuous transition, shown for Q = 1000, B = 0.6.

parameters.

Table 2: δ2 > 0 and δ4 > 0 indicate that only one unstable periodic orbit collides with P1

as R crosses R2; δ2 > 0 and δ4 < 0 means that at some previous value R∗ < R2 two periodic

orbits, one stable and one unstable, collide as R crosses R∗ from above.

(Q,B) \ δi δ2 δ3 δ4

(400, 0.2) 7× 10−4 −2.75× 10−6 15× 10−4

(100, 0.4) 48× 10−4 21.3× 10−6 6.9× 10−4

(10, 0.6) 71.6× 10−4 −26.45× 10−6 2.85× 10−4

(50, 1) 72.19× 10−4 −68.42× 10−6 3.21× 10−4

(200, 1.2) 58.98× 10−4 −92.14× 10−6 9.51× 10−4

Finally, in the marginal case δ2 = 0 the transition type depends entirely on245

the sign of δ4. In Table 3 we show some of the values for δ4 obtained by taking

Q = Qc(B) and varying B (see Figure 5). A more detailed exploration of δ4

as a function of B in the aforementioned way shows that, in fact, δ4 is always

positive, which then indicates that the transition is of jump type all the up to
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Figure 8: Distance between the trajectory and the critical point P1 as a function of time

before jump transition, shown for Q = 200, B = 0.6.

the critical curve, i.e. for all Q ≤ Qc(B).250

Table 3: The values of the bifurcation number δ4 with respect to the Chandrasekhar number

Q and the geometry parameter B as δ2 = 0. δ4 > 0 indicates jump transition.

(B,Qc(B)) δ4

(0.4, 351.2605) 0.001443

(0.6, 321.3736) 0.0014633

(0.8, 349.1291) 0.0015327

(1, 522.6765) 0.0013321

5. Conclusion

Our study based on the simplified model reveals that magnetic field plays

an important role in determining the types of the second transition of Rayleigh-

Benard convection in the presence of magnetic field. Without magnetic field, for

all B in (0, 4), the second transition is of jump type. If magnetic field is consid-255
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ered, for any fixed B < 1.17795, there exists a Qc such that when Q > Qc, the

second transition is continuous, i.e., (25)–(28) bifurcates to a stable periodic

orbit. Hence, magnetic field has a stabilizing effect in heat convection. It is

also clear from the graph 5 that for large aspect ratio (roughly equal to height

larger than width), under the influence of magnetic field, the second transition260

is continuous; whereas for small aspect ratio, the second transition is always of

jump type irrespective of the magnitude of magnetic field. These conclusions,

albeit drawn from the low-dimension model, may be relevant for the general

Rayleigh-Benard convection under the influence of magnetic effect. In particu-

lar, it suggests the complexity of the second and the subsequent transition of265

the RB convection in terms of the physical parameters such as magnetic field

and aspect ratio. The framework lay out in this study is still applicable for the

general RB convection which will be pursued in a future work.
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